Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health.

نویسندگان

  • Shanshan Wen
  • Nuan Wen
  • Jinsong Pang
  • Gregor Langen
  • Rhoda A T Brew-Appiah
  • Jaime H Mejias
  • Claudia Osorio
  • Mingming Yang
  • Richa Gemini
  • Charles P Moehs
  • Robert S Zemetra
  • Karl-Heinz Kogel
  • Bao Liu
  • Xingzhi Wang
  • Diter von Wettstein
  • Sachin Rustgi
چکیده

Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active DNA demethylation mediated by DNA glycosylases.

Active DNA demethylation is involved in many vital developmental and physiological processes of plants and animals. Recent genetic and biochemical studies in Arabidopsis have demonstrated that a subfamily of DNA glycosylases function to promote DNA demethylation through a base excision-repair pathway. These specialized bifunctional DNA glycosylases remove the 5-methylcytosine base and then clea...

متن کامل

The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs.

Human thymine-DNA glycosylase (TDG) is well known to excise thymine and uracil from G.T and G.U mismatches, respectively, and was therefore proposed to play a central role in the cellular defense against genetic mutation through spontaneous deamination of 5-methylcytosine and cytosine. In this study, we characterized two newly discovered orthologs of TDG, the Drosophila melanogaster Thd1p and t...

متن کامل

5-Methylcytosine Recognition by Arabidopsis thaliana DNA Glycosylases DEMETER and DML3

Methylation of cytosine to 5-methylcytosine (5mC) is important for gene expression, gene imprinting, X-chromosome inactivation, and transposon silencing. Active demethylation in animals is believed to proceed by DNA glycosylase removal of deaminated or oxidized 5mC. In plants, 5mC is removed from the genome directly by the DEMETER (DME) family of DNA glycosylases. Arabidopsis thaliana DME excis...

متن کامل

A histone acetyltransferase regulates active DNA demethylation in Arabidopsis.

Active DNA demethylation is an important part of epigenetic regulation in plants and animals. How active DNA demethylation is regulated and its relationship with histone modification patterns are unclear. Here, we report the discovery of IDM1, a regulator of DNA demethylation in Arabidopsis. IDM1 is required for preventing DNA hypermethylation of highly homologous multicopy genes and other repe...

متن کامل

Domain structure of the DEMETER 5-methylcytosine DNA glycosylase.

DNA glycosylases initiate the base excision repair (BER) pathway by excising damaged, mismatched, or otherwise modified bases. Animals and plants independently evolved active BER-dependent DNA demethylation mechanisms important for epigenetic reprogramming. One such DNA demethylation mechanism is uniquely initiated in plants by DEMETER (DME)-class DNA glycosylases. Arabidopsis DME family glycos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 50  شماره 

صفحات  -

تاریخ انتشار 2012